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Abstract

Artificial Intelligence (AI) and Machine Learning (ML) are showing tremendous potential in industrial applications ranging
from internet, cloud, media, entertainment, medicine, biology, security, defense, to autonomous vehicles, driving and flying.
The status quo is reviewed providing concrete insight of this fascinating and continuously evolving technology which is
currently being massively deployed in multiple industrial segments and which continues to forcefully advance to its next stages
of development.

The author has been committed to advancing AI and ML since the early 1980’s including pioneering breakthrough applica-
tions, industrial and in research [10], advanced learning / training methods [11] as well as the early use of neurochips and
advanced development environments [6]. After being heavily involved in AI for VLSI, i.e., built an AI- tool at the Karlsruhe
Institute of Technology (KIT) to design ASICs which we then used at Siemens AG to build custom processors for automation, I
founded with around 15 experts a committee on VLSI for AI in 1985 in Berlin.

Conscious of the demanding time and memory complexity requirements, with some of them I built later a real-time, scalable,
heterogeneous, parallel distributed supercomputer at the German NASA (DLR), the fastest of its time worldwide, on which
intelligent, autonomous systems could be implemented for space and terrestrial applications, e.g., at Daimler Benz (Mercedes)
for its autonomous vehicle development and which we used in a NASA-ESA-DLR spaceshuttle-spacelab mission demonstrating
fully integrated, real-time AI, computer vision, augmented reality, analytics, teleoperation, shared control, and full autonomy
for specific tasks, i.e., in brief what only decades later, today, the rest of the world is pursuing.
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The main industrial players include currently multiple large corporations like Google, Microsoft, IBM, Amazon, Intel,
specialized startups, either acquired or still growing, like Movidius, Argo AI, Scyfer, Zebra Medical Vision to provide either
the basic infrastructure to develop deep learning applications or even highly specific vertical applications as well as multiple
end users, investors like J.P. Morgan in financial services, Illumina in genomics, Tesla in the automotive industry, Lockheed
Martin in cybersecurity to mention just very few. Here we showcase a few key representatives to provide direct insight into the
developing systems being used to perform inference and training of machine learning models in practice.

Since the inference, i.e., running an already trained model, is computationally less challenging, our focus is on the training
(in case of supervised learning) of deep learning models. Using benchmarks like Imagenet [3], Deep Neural Networks (DNN),
e.g., AlexNet [1], RedNet-152 [4], InceptionV3 [2], VGG-16 [5] to mention a few, are often tested and compared, cf. some DNN
example architectures in Figure 7, shown in (a) is the AlexNet and in (b) VGG-19 and ResNet-34 in comparison.

Figure 1 shows in (a) an Intel’s Xeon Phi processor often built in servers which offer DNN training and inference in the cloud,
in (b) planned evolution of the Xeon Phi product family including Knight Hills in 10 nm technology, in (c) members of Intel’s
family of processors for AI and Deep Learning (DL) datacenter workloads used for inference and training, and in (d) the Knight
Hills System-on-Chip (SoC). Microsoft’s new cloud acceleration framework, called hardware microservices model, designed
also to accelerate DNNs, utilizes hybrid servers that mix Intel’s Xeon processors (CPUs) with Intel-Altera’s Field Programmable
Gate Arrays (FPGAs). Fairly recently, Intel has announced work towards the next exascale microarchitecture which should
bring among others Cray to build the U.S. DoE’s Aurora Supercomputer to provide EFlop performance.

Figure 1: Intel’s Xeon Phi Processor Product Family for Datacenter AI and ML Acceleration [8]

Figure 2 shows in (a) a so called Google’s TPU (Tensor Processing Unit) pod composed of 64 2nd generation TPUs providing
11.5 PFlops and 4TB of memory interconnected using a 2D toroidal mesh network, in (b) a board hosting 4 2nd generation
TPUs, each chip providing 45 TFlops, in (c) a 1st generation TPU used only for inference, and in (d) 1st generation TPUs
deployed at a Google datacenter. Using TensorFlow, an open-source symbolic math library used for machine learning in
research and production at Google, stateful dataflow graphs are used to express computations, e.g., operations on tensors
performed by neural networks, that can then run in accelerated fashion on multiple CPUs, GPUs, and Google’ s TPUs, i.e.,
ASICs used as high throughput programmable AI accelerators for inference and in its 2nd generation also for training.

Figure 2: Google’s AI Accelerating Supercomputers based on 1st and 2nd generation TPUs [7]

Figure 3 shows in (a) a 4 PFlop supercomputer Fujitsu is building for the Japanese Riken research center composed of
32 Fujitsu’s Intel Xeon-based servers and 24 Nvidia’s DGX-1 AI accelerator systems, in (b) the Nvidia’s 170 TFlop FP16 first
generation DGX-1 deep learning supercomputer based on 8 Tesla P100, and in (c) the Tesla P100 GPU accelerator based on the
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Pascal GPU architecture hosting 3584 CUDA cores, 21.2 TFlops FP16, 16 GB HMB2 GPU memory, 732 GB/s memory bandwidth,
and the NVLink high-speed interconnect to tightly integrate CPUs and GPUs. APIs supported include Cuda, OpenCL among
others.

Figure 3: Deep Learning Supercomputers based on Nvidia’s DGX-1 and Tesla P100 GPU Accelerator [9]

Figure 4 shows in (a) the Nvidia’s deep learning Software Development Kit (SDK), basis for diverse frameworks and appli-
cations, in (b) the Nvidia’s interactive deep learning GPU training system DIGITS to process data, configure DNNs, monitor
progress and visualize layers, and in (c) the DGX Stack, a fully integrated deep learning platform composed of the GPU-
optimized Linux server OS, GPU compute driver software, the containerization tool NVDocker, the deep learning libraries
cuDNN and NCCL, and on top DIGITS. Figure 5 shows in (a) the Nvidia’s Titan V card based on the Nvidia’s supercomputing
GPU architecture named Volta, 110 TFlops, 12 GB HBM2 3D stacked memory, 652.8 GB/s memory bandwidth, 640 and 5120
Tensor and CUDA cores respectively (tensor cores are programmable matrix-multiply-and-accumulate units that provide a
substantial boost to convolutions and matrix operations), in (b) a Nvidia’s Tesla V100 SXM2 mezzanine card, 120 TFlops, 16 GB
HBM2 GPU memory, 900 GB/s memory bandwidth, 640 and 5120 Tensor and CUDA cores respectively, 300 GB/s interconnect
bandwidth, in (c) Nvidia’s TensorRT, a high performance neural network inference optimizer and runtime engine for production
deployment, and in (d) faster inference throughput results on ResNet-50 when using a Nvidia’s V100 and TensorRT: 5707
images/sec and 6.97 ms real-time latency, vehemently beating all other three alternatives: a Xeon Broadwell-E CPU-only, a
V100 and TensorFlow, and a P100 and TensorRT.

Figure 4: Nvidia’s Deep Learning Platform: SDK, Digits, and DGX Stack [9]

The largest AI supercomputing system in Japan will soon be built also by Fujitsu for the Japanese National Institute of
Advanced Industrial Science and Technology (AIST) for its AI Bridging Cloud Infrastructure (ABCI) capable of 550 PFlops
consisting of 1,088 Fujitsu Primergy CX2570 M4 servers, each server hosting 2 Intel Xeon Gold processors and 4 Nvidia Tesla
V100 GPU accelerators. Figure 6 shows in (a) Nvidia Docker to create containerized applications, i.e., to build and run Docker
containers leveraging the deployed Nvidia’s GPUs, in (b) how to deploy TensorRT as a microservice using the GPU REST Engine
(GRE) SDK, and in (c) an example of this procedure with a classification microservice deployed to CPUs/GPUs.

Figure 5: Volta Architecture, Tesla V100 GPU Accelerator, Acceleration Results using TensorRT [9]
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Figure 6: Application Containerization and Production Deployment of TensorRT Microservices [9]

Figure 7: Some Deep Neural Network (DNN) Architecture Examples [1, 4]
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